Adversarial Semantic Decoupling for Recognizing Open-Vocabulary Slots

Yuanmeng Yan, Keqing He, Hong Xu, Sihong Liu, Fanyu Meng, Min Hu, Weiran Xu

Syntax: Tagging, Chunking, and Parsing Short Paper

Gather-4I: Nov 18, Gather-4I: Nov 18 (02:00-04:00 UTC) [Join Gather Meeting]

You can open the pre-recorded video in a separate window.

Abstract: Open-vocabulary slots, such as file name, album name, or schedule title, significantly degrade the performance of neural-based slot filling models since these slots can take on values from a virtually unlimited set and have no semantic restriction nor a length limit. In this paper, we propose a robust adversarial model-agnostic slot filling method that explicitly decouples local semantics inherent in open-vocabulary slot words from the global context. We aim to depart entangled contextual semantics and focus more on the holistic context at the level of the whole sentence. Experiments on two public datasets show that our method consistently outperforms other methods with a statistically significant margin on all the open-vocabulary slots without deteriorating the performance of normal slots.
NOTE: Video may display a random order of authors. Correct author list is at the top of this page.

Connected Papers in EMNLP2020

Similar Papers

Uncertainty-Aware Semantic Augmentation for Neural Machine Translation
Xiangpeng Wei, Heng Yu, Yue Hu, Rongxiang Weng, Luxi Xing, Weihua Luo,
Dense Passage Retrieval for Open-Domain Question Answering
Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, Wen-tau Yih,
XL-WiC: A Multilingual Benchmark for Evaluating Semantic Contextualization
Alessandro Raganato, Tommaso Pasini, Jose Camacho-Collados, Mohammad Taher Pilehvar,
Semantic Label Smoothing for Sequence to Sequence Problems
Michal Lukasik, Himanshu Jain, Aditya Menon, Seungyeon Kim, Srinadh Bhojanapalli, Felix Yu, Sanjiv Kumar,