XL-WiC: A Multilingual Benchmark for Evaluating Semantic Contextualization

Alessandro Raganato, Tommaso Pasini, Jose Camacho-Collados, Mohammad Taher Pilehvar

Semantics: Lexical Semantics Long Paper

Zoom-11D: Nov 18, Zoom-11D: Nov 18 (08:00-09:00 UTC) [Join Zoom Meeting]

You can open the pre-recorded video in a separate window.

Abstract: The ability to correctly model distinct meanings of a word is crucial for the effectiveness of semantic representation techniques. However, most existing evaluation benchmarks for assessing this criterion are tied to sense inventories (usually WordNet), restricting their usage to a small subset of knowledge-based representation techniques. The Word-in-Context dataset (WiC) addresses the dependence on sense inventories by reformulating the standard disambiguation task as a binary classification problem; but, it is limited to the English language. We put forward a large multilingual benchmark, XL-WiC, featuring gold standards in 12 new languages from varied language families and with different degrees of resource availability, opening room for evaluation scenarios such as zero-shot cross-lingual transfer. We perform a series of experiments to determine the reliability of the datasets and to set performance baselines for several recent contextualized multilingual models. Experimental results show that even when no tagged instances are available for a target language, models trained solely on the English data can attain competitive performance in the task of distinguishing different meanings of a word, even for distant languages. XL-WiC is available at https://pilehvar.github.io/xlwic/.
NOTE: Video may display a random order of authors. Correct author list is at the top of this page.

Connected Papers in EMNLP2020

Similar Papers

XCOPA: A Multilingual Dataset for Causal Commonsense Reasoning
Edoardo Maria Ponti, Goran Glavaš, Olga Majewska, Qianchu Liu, Ivan Vulić, Anna Korhonen,
X-FACTR: Multilingual Factual Knowledge Retrieval from Pretrained Language Models
Zhengbao Jiang, Antonios Anastasopoulos, Jun Araki, Haibo Ding, Graham Neubig,