A Synset Relation-enhanced Framework with a Try-again Mechanism for Word Sense Disambiguation

Ming Wang, Yinglin Wang

Semantics: Lexical Semantics Long Paper

Gather-4G: Nov 18, Gather-4G: Nov 18 (02:00-04:00 UTC) [Join Gather Meeting]

You can open the pre-recorded video in a separate window.

Abstract: Contextual embeddings are proved to be overwhelmingly effective to the task of Word Sense Disambiguation (WSD) compared with other sense representation techniques. However, these embeddings fail to embed sense knowledge in semantic networks. In this paper, we propose a Synset Relation-Enhanced Framework (SREF) that leverages sense relations for both sense embedding enhancement and a try-again mechanism that implements WSD again, after obtaining basic sense embeddings from augmented WordNet glosses. Experiments on all-words and lexical sample datasets show that the proposed system achieves new state-of-the-art results, defeating previous knowledge-based systems by at least 5.5 F1 measure. When the system utilizes sense embeddings learned from SemCor, it outperforms all previous supervised systems with only 20% SemCor data.
NOTE: Video may display a random order of authors. Correct author list is at the top of this page.

Connected Papers in EMNLP2020

Similar Papers