Multi-document Summarization with Maximal Marginal Relevance-guided Reinforcement Learning

Yuning Mao, Yanru Qu, Yiqing Xie, Xiang Ren, Jiawei Han

Information Retrieval and Text Mining Long Paper

Gather-1G: Nov 17, Gather-1G: Nov 17 (02:00-04:00 UTC) [Join Gather Meeting]

You can open the pre-recorded video in a separate window.

Abstract: While neural sequence learning methods have made significant progress in single-document summarization (SDS), they produce unsatisfactory results on multi-document summarization (MDS). We observe two major challenges when adapting SDS advances to MDS: (1) MDS involves larger search space and yet more limited training data, setting obstacles for neural methods to learn adequate representations; (2) MDS needs to resolve higher information redundancy among the source documents, which SDS methods are less effective to handle. To close the gap, we present RL-MMR, Maximal Margin Relevance-guided Reinforcement Learning for MDS, which unifies advanced neural SDS methods and statistical measures used in classical MDS. RL-MMR casts MMR guidance on fewer promising candidates, which restrains the search space and thus leads to better representation learning. Additionally, the explicit redundancy measure in MMR helps the neural representation of the summary to better capture redundancy. Extensive experiments demonstrate that RL-MMR achieves state-of-the-art performance on benchmark MDS datasets. In particular, we show the benefits of incorporating MMR into end-to-end learning when adapting SDS to MDS in terms of both learning effectiveness and efficiency.
NOTE: Video may display a random order of authors. Correct author list is at the top of this page.

Connected Papers in EMNLP2020

Similar Papers

Q-learning with Language Model for Edit-based Unsupervised Summarization
Ryosuke Kohita, Akifumi Wachi, Yang Zhao, Ryuki Tachibana,
Pre-training for Abstractive Document Summarization by Reinstating Source Text
Yanyan Zou, Xingxing Zhang, Wei Lu, Furu Wei, Ming Zhou,
Few-Shot Learning for Opinion Summarization
Arthur Bražinskas, Mirella Lapata, Ivan Titov,