LibKGE - A knowledge graph embedding library for reproducible research

Samuel Broscheit, Daniel Ruffinelli, Adrian Kochsiek, Patrick Betz, Rainer Gemulla

Demo Paper

Gather-5J: Nov 18, Gather-5J: Nov 18 (18:00-20:00 UTC) [Join Gather Meeting]

Abstract: LibKGE ( https://github.com/uma-pi1/kge ) is an open-source PyTorch-based library for training, hyperparameter optimization, and evaluation of knowledge graph embedding models for link prediction. The key goals of LibKGE are to enable reproducible research, to provide a framework for comprehensive experimental studies, and to facilitate analyzing the contributions of individual components of training methods, model architectures, and evaluation methods. LibKGE is highly configurable and every experiment can be fully reproduced with a single configuration file. Individual components are decoupled to the extent possible so that they can be mixed and matched with each other. Implementations in LibKGE aim to be as efficient as possible without leaving the scope of Python/Numpy/PyTorch. A comprehensive logging mechanism and tooling facilitates in-depth analysis. LibKGE provides implementations of common knowledge graph embedding models and training methods, and new ones can be easily added. A comparative study (Ruffinelli et al., 2020) showed that LibKGE reaches competitive to state-of-the-art performance for many models with a modest amount of automatic hyperparameter tuning.

Similar Papers

Exploring and Evaluating Attributes, Values, and Structures for Entity Alignment
Zhiyuan Liu, Yixin Cao, Liangming Pan, Juanzi Li, Zhiyuan Liu, Tat-Seng Chua,
Wikipedia2Vec: An Efficient Toolkit for Learning and Visualizing the Embeddings of Words and Entities from Wikipedia
Ikuya Yamada, Akari Asai, Jin Sakuma, Hiroyuki Shindo, Hideaki Takeda, Yoshiyasu Takefuji, Yuji Matsumoto,
ENT-DESC: Entity Description Generation by Exploring Knowledge Graph
Liying Cheng, Dekun Wu, Lidong Bing, Yan Zhang, Zhanming Jie, Wei Lu, Luo Si,
OpenUE: An Open Toolkit of Universal Extraction from Text
Ningyu Zhang, Shumin Deng, Zhen Bi, Haiyang Yu, Jiacheng Yang, Mosha Chen, Fei Huang, Wei Zhang, Huajun Chen,