Amalgamating Knowledge from Two Teachers for Task-oriented Dialogue System with Adversarial Training

Wanwei He, Min Yang, Rui Yan, Chengming Li, Ying Shen, Ruifeng Xu

Dialog and Interactive Systems Long Paper

Gather-2B: Nov 17, Gather-2B: Nov 17 (10:00-12:00 UTC) [Join Gather Meeting]

You can open the pre-recorded video in a separate window.

Abstract: The challenge of both achieving task completion by querying the knowledge base and generating human-like responses for task-oriented dialogue systems is attracting increasing research attention. In this paper, we propose a “Two-Teacher One-Student” learning framework (TTOS) for task-oriented dialogue, with the goal of retrieving accurate KB entities and generating human-like responses simultaneously. TTOS amalgamates knowledge from two teacher networks that together provide comprehensive guidance to build a high-quality task-oriented dialogue system (student network). Each teacher network is trained via reinforcement learning with a goal-specific reward, which can be viewed as an expert towards the goal and transfers the professional characteristic to the student network. Instead of adopting the classic student-teacher learning of forcing the output of a student network to exactly mimic the soft targets produced by the teacher networks, we introduce two discriminators as in generative adversarial network (GAN) to transfer knowledge from two teachers to the student. The usage of discriminators relaxes the rigid coupling between the student and teachers. Extensive experiments on two benchmark datasets (i.e., CamRest and In-Car Assistant) demonstrate that TTOS significantly outperforms baseline methods.
NOTE: Video may display a random order of authors. Correct author list is at the top of this page.

Connected Papers in EMNLP2020

Similar Papers

TOD-BERT: Pre-trained Natural Language Understanding for Task-Oriented Dialogue
Chien-Sheng Wu, Steven C.H. Hoi, Richard Socher, Caiming Xiong,
Cross Copy Network for Dialogue Generation
Changzhen Ji, Xin Zhou, Yating Zhang, Xiaozhong Liu, Changlong Sun, Conghui Zhu, Tiejun Zhao,
Structured Attention for Unsupervised Dialogue Structure Induction
Liang Qiu, Yizhou Zhao, Weiyan Shi, Yuan Liang, Feng Shi, Tao Yuan, Zhou Yu, Song-Chun Zhu,