Semantic Role Labeling Guided Multi-turn Dialogue ReWriter
Kun Xu, Haochen Tan, Linfeng Song, Han Wu, Haisong Zhang, Linqi Song, Dong Yu
Dialog and Interactive Systems Short Paper
You can open the pre-recorded video in a separate window.
Abstract:
For multi-turn dialogue rewriting, the capacity of effectively modeling the linguistic knowledge in dialog context and getting ride of the noises is essential to improve its performance. Existing attentive models attend to all words without prior focus, which results in inaccurate concentration on some dispensable words. In this paper, we propose to use semantic role labeling (SRL), which highlights the core semantic information of who did what to whom, to provide additional guidance for the rewriter model. Experiments show that this information significantly improves a RoBERTa-based model that already outperforms previous state-of-the-art systems.
NOTE: Video may display a random order of authors.
Correct author list is at the top of this page.