End-to-End Emotion-Cause Pair Extraction based on Sliding Window Multi-Label Learning
Zixiang Ding, Rui Xia, Jianfei Yu
Sentiment Analysis, Stylistic Analysis, and Argument Mining Long Paper
You can open the pre-recorded video in a separate window.
Abstract:
Emotion-cause pair extraction (ECPE) is a new task that aims to extract the potential pairs of emotions and their corresponding causes in a document. The existing methods first perform emotion extraction and cause extraction independently, and then perform emotion-cause pairing and filtering. However, the above methods ignore the fact that the cause and the emotion it triggers are inseparable, and the extraction of the cause without specifying the emotion is pathological, which greatly limits the performance of the above methods in the first step. To tackle these shortcomings, we propose two joint frameworks for ECPE: 1) multi-label learning for the extraction of the cause clauses corresponding to the specified emotion clause (CMLL) and 2) multi-label learning for the extraction of the emotion clauses corresponding to the specified cause clause (EMLL). The window of multi-label learning is centered on the specified emotion clause or cause clause and slides as their positions move. Finally, CMLL and EMLL are integrated to obtain the final result. We evaluate our model on a benchmark emotion cause corpus, the results show that our approach achieves the best performance among all compared systems on the ECPE task.
NOTE: Video may display a random order of authors.
Correct author list is at the top of this page.