Recurrent Interaction Network for Jointly Extracting Entities and Classifying Relations

Kai Sun, Richong Zhang, Samuel Mensah, Yongyi Mao, Xudong Liu

Information Extraction Long Paper

Gather-2C: Nov 17, Gather-2C: Nov 17 (10:00-12:00 UTC) [Join Gather Meeting]

You can open the pre-recorded video in a separate window.

Abstract: The idea of using multi-task learning approaches to address the joint extraction of entity and relation is motivated by the relatedness between the entity recognition task and the relation classification task. Existing methods using multi-task learning techniques to address the problem learn interactions among the two tasks through a shared network, where the shared information is passed into the task-specific networks for prediction. However, such an approach hinders the model from learning explicit interactions between the two tasks to improve the performance on the individual tasks. As a solution, we design a multi-task learning model which we refer to as recurrent interaction network which allows the learning of interactions dynamically, to effectively model task-specific features for classification. Empirical studies on two real-world datasets confirm the superiority of the proposed model.
NOTE: Video may display a random order of authors. Correct author list is at the top of this page.

Connected Papers in EMNLP2020

Similar Papers

Severing the Edge Between Before and After: Neural Architectures for Temporal Ordering of Events
Miguel Ballesteros, Rishita Anubhai, Shuai Wang, Nima Pourdamghani, Yogarshi Vyas, Jie Ma, Parminder Bhatia, Kathleen McKeown, Yaser Al-Onaizan,