Biomedical Event Extraction as Sequence Labeling

Alan Ramponi, Rob van der Goot, Rosario Lombardo, Barbara Plank

Information Extraction Long Paper

Gather-3E: Nov 17, Gather-3E: Nov 17 (18:00-20:00 UTC) [Join Gather Meeting]

You can open the pre-recorded video in a separate window.

Abstract: We introduce Biomedical Event Extraction as Sequence Labeling (BeeSL), a joint end-to-end neural information extraction model. BeeSL recasts the task as sequence labeling, taking advantage of a multi-label aware encoding strategy and jointly modeling the intermediate tasks via multi-task learning. BeeSL is fast, accurate, end-to-end, and unlike current methods does not require any external knowledge base or preprocessing tools. BeeSL outperforms the current best system (Li et al., 2019) on the Genia 2011 benchmark by 1.57% absolute F1 score reaching 60.22% F1, establishing a new state of the art for the task. Importantly, we also provide first results on biomedical event extraction without gold entity information. Empirical results show that BeeSL's speed and accuracy makes it a viable approach for large-scale real-world scenarios.
NOTE: Video may display a random order of authors. Correct author list is at the top of this page.

Connected Papers in EMNLP2020

Similar Papers