ConjNLI: Natural Language Inference Over Conjunctive Sentences

Swarnadeep Saha, Yixin Nie, Mohit Bansal

Semantics: Sentence-level Semantics, Textual Inference and Other areas Long Paper

Gather-5B: Nov 18, Gather-5B: Nov 18 (18:00-20:00 UTC) [Join Gather Meeting]

You can open the pre-recorded video in a separate window.

Abstract: Reasoning about conjuncts in conjunctive sentences is important for a deeper understanding of conjunctions in English and also how their usages and semantics differ from conjunctive and disjunctive boolean logic. Existing NLI stress tests do not consider non-boolean usages of conjunctions and use templates for testing such model knowledge. Hence, we introduce ConjNLI, a challenge stress-test for natural language inference over conjunctive sentences, where the premise differs from the hypothesis by conjuncts removed, added, or replaced. These sentences contain single and multiple instances of coordinating conjunctions ("and", "or", "but", "nor") with quantifiers, negations, and requiring diverse boolean and non-boolean inferences over conjuncts. We find that large-scale pre-trained language models like RoBERTa do not understand conjunctive semantics well and resort to shallow heuristics to make inferences over such sentences. As some initial solutions, we first present an iterative adversarial fine-tuning method that uses synthetically created training data based on boolean and non-boolean heuristics. We also propose a direct model advancement by making RoBERTa aware of predicate semantic roles. While we observe some performance gains, ConjNLI is still challenging for current methods, thus encouraging interesting future work for better understanding of conjunctions.
NOTE: Video may display a random order of authors. Correct author list is at the top of this page.

Connected Papers in EMNLP2020

Similar Papers

BLiMP: The Benchmark of Linguistic Minimal Pairs for English
Alex Warstadt, Alicia Parrish, Haokun Liu, Anhad Monananey, Wei Peng, Sheng-Fu Wang, Samuel Bowman,
Discern: Discourse-Aware Entailment Reasoning Network for Conversational Machine Reading
Yifan Gao, Chien-Sheng Wu, Jingjing Li, Shafiq Joty, Steven C.H. Hoi, Caiming Xiong, Irwin King, Michael Lyu,