Multi-task Learning for Multilingual Neural Machine Translation

Yiren Wang, ChengXiang Zhai, Hany Hassan

Machine Translation and Multilinguality Long Paper

Gather-1A: Nov 17, Gather-1A: Nov 17 (02:00-04:00 UTC) [Join Gather Meeting]

You can open the pre-recorded video in a separate window.

Abstract: While monolingual data has been shown to be useful in improving bilingual neural machine translation (NMT), effectively and efficiently leveraging monolingual data for Multilingual NMT (MNMT) systems is a less explored area. In this work, we propose a multi-task learning (MTL) framework that jointly trains the model with the translation task on bitext data and two denoising tasks on the monolingual data. We conduct extensive empirical studies on MNMT systems with $10$ language pairs from WMT datasets. We show that the proposed approach can effectively improve the translation quality for both high-resource and low-resource languages with large margin, achieving significantly better results than the individual bilingual models. We also demonstrate the efficacy of the proposed approach in the zero-shot setup for language pairs without bitext training data. Furthermore, we show the effectiveness of MTL over pre-training approaches for both NMT and cross-lingual transfer learning NLU tasks; the proposed approach outperforms massive scale models trained on single task.
NOTE: Video may display a random order of authors. Correct author list is at the top of this page.

Connected Papers in EMNLP2020

Similar Papers

Multilingual Denoising Pre-training for Neural Machine Translation
Jiatao Gu, Yinhan Liu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer,
Language Model Prior for Low-Resource Neural Machine Translation
Christos Baziotis, Barry Haddow, Alexandra Birch,
Revisiting Modularized Multilingual NMT to Meet Industrial Demands
Sungwon Lyu, Bokyung Son, Kichang Yang, Jaekyoung Bae,