MAD-X: An Adapter-Based Framework for Multi-Task Cross-Lingual Transfer

Jonas Pfeiffer, Ivan Vulić, Iryna Gurevych, Sebastian Ruder

Machine Translation and Multilinguality Long Paper

Zoom-14A: Nov 18, Zoom-14A: Nov 18 (17:00-18:00 UTC) [Join Zoom Meeting]

You can open the pre-recorded video in a separate window.

Abstract: The main goal behind state-of-the-art pre-trained multilingual models such as multilingual BERT and XLM-R is enabling and bootstrapping NLP applications in low-resource languages through zero-shot or few-shot cross-lingual transfer. However, due to limited model capacity, their transfer performance is the weakest exactly on such low-resource languages and languages unseen during pre-training. We propose MAD-X, an adapter-based framework that enables high portability and parameter-efficient transfer to arbitrary tasks and languages by learning modular language and task representations. In addition, we introduce a novel invertible adapter architecture and a strong baseline method for adapting a pre-trained multilingual model to a new language. MAD-X outperforms the state of the art in cross lingual transfer across a representative set of typologically diverse languages on named entity recognition and causal commonsense reasoning, and achieves competitive results on question answering. Our code and adapters are available at AdapterHub.ml.
NOTE: Video may display a random order of authors. Correct author list is at the top of this page.

Connected Papers in EMNLP2020

Similar Papers

Pre-training Multilingual Neural Machine Translation by Leveraging Alignment Information
Zehui Lin, Xiao Pan, Mingxuan Wang, Xipeng Qiu, Jiangtao Feng, Hao Zhou, Lei Li,
XGLUE: A New Benchmark Datasetfor Cross-lingual Pre-training, Understanding and Generation
Yaobo Liang, Nan Duan, Yeyun Gong, Ning Wu, Fenfei Guo, Weizhen Qi, Ming Gong, Linjun Shou, Daxin Jiang, Guihong Cao, Xiaodong Fan, Ruofei Zhang, Rahul Agrawal, Edward Cui, Sining Wei, Taroon Bharti, Ying Qiao, Jiun-Hung Chen, Winnie Wu, Shuguang Liu, Fan Yang, Daniel Campos, Rangan Majumder, Ming Zhou,