MedICaT: A Dataset of Medical Images, Captions, and Textual References
Sanjay Subramanian, Lucy Lu Wang, Ben Bogin, Sachin Mehta, Madeleine van Zuylen, Sravanthi Parasa, Sameer Singh, Matt Gardner, Hannaneh Hajishirzi
First Workshop on Scholarly Document Processing (SDP 2020) Workshop Paper
You can open the pre-recorded video in a separate window.
Abstract:
Understanding the relationship between figures and text is key to scientific document understanding. Medical figures in particular are quite complex, often consisting of several subfigures (75% of figures in our dataset), with detailed text describing their content. Previous work studying figures in scientific papers focused on classifying figure content rather than understanding how images relate to the text. To address challenges in figure retrieval and figure-to-text alignment, we introduce MedICaT, a dataset of medical images in context. MedICaT consists of 217K images from 131K open access biomedical papers, and includes captions, inline references for 74% of figures, and manually annotated subfigures and subcaptions for a subset of figures. Using MedICaT, we introduce the task of subfigure to subcaption alignment in compound figures and demonstrate the utility of inline references in image-text matching. Our data and code can be accessed at https://github.com/allenai/medicat.
NOTE: Video may display a random order of authors.
Correct author list is at the top of this page.